On Kronecker limit formulas for real quadratic fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Kronecker limit formulas for real quadratic fields

Let ζ(s,C) be the partial zeta function attached to a ray class C of a real quadratic field. We study this zeta function at s = 1 and s = 0, combining some ideas and methods due to Zagier and Shintani. The main results are (1) a generalization of Zagier’s formula for the constant term of the Laurent expansion at s = 1, (2) some expressions for the value and the first derivative at s = 0, relate...

متن کامل

A Kronecker Limit Formula for Totally Real Fields and Arithmetic Applications

We establish a Kronecker limit formula for the zeta function ζF (s,A) of a wide ideal class A of a totally real number field F of degree n. This formula relates the constant term in the Laurent expansion of ζF (s,A) at s = 1 to a toric integral of a SLn(Z)-invariant function logG(Z) along a Heegner cycle in the symmetric space of GLn(R). We give several applications of this formula to algebraic...

متن کامل

Real Quadratic Number Fields

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...

متن کامل

Explicit formulas for units in certain quadratic number fields

There is a class of quadratic number fields for which it is possible to find an explicit continued fraction expansion of a generator and hence an explicit formula for the fundamental unit. One therewith displays a family of quadratic fields with relatively large regulator. The formula for the fundamental unit seems far simpler than the continued fraction expansion, yet the expansion seems neces...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2008

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2007.05.010